

## Lecture 1: Introduction

#### Ahmad Shahedi Shakil

Lecturer, Dept. of Mechanical Engg, BUET

*E-mail:* <u>sshakil@me.buet.ac.bd</u>, <u>shakil6791@gmail.com</u>

Website: teacher.buet.ac.bd/sshakil



## Reference Books

• Strength of Materials

---- Andrew Pytel

Ferdinand L. Singer.

Mechanics of Materials

---- Beer, Johnston, Dewolf, Mazurek

• Elements of mechanics of materials

---- Gerner A. Olsen

• Mechanics of materials

---- Amalesh Chandra Mandal, Md. Quamrul Islam

**\*\*** Collect the books of latest SI editions

# What is Mechanics of Solids?

- 3 fundamental areas of engineering mechanics are-
  - 1. Statics
  - 2. Dynamics
  - 3. Mechanics of Solids (Strength of Materials).
- Statics and dynamics deal with the external effects of forces on rigid bodies.
- Strength of materials deals with the external loads and their internal effects on bodies.
- The deformations, however small, are of major interest.

#### Stress

- When an external force is applied on a body, an internal force is developed in order to resist the external force.
- The internal force per unit area at any section is known as unit stress or stress. Therefore,

Stress=
$$\frac{F}{A}$$
,  
F is the force acting on the body,  
A is the cross sectional area.

### Stress

F







## Normal stress

- When the resultant of internal forces acts in the direction perpendicular to the reaction plane, the stress is called normal stress. It is denoted by ' $\sigma$ '.
- Normal stress can be of 2 types.
  - 1. Tensile stress.
  - 2. Compressive stress.
- When the load elongates the member, it is called tension and the stress is called *tensile stress* [fig. (a)].
- When the load shortens the member, it is called compression and the stress is called *compressive stress* [fig. (b)].



## Shear stress

 When the resultant of internal forces acts in the direction parallel to the reaction plane, the stress is called shear stress. It is denoted by 'τ'.



#### Single Shear

#### **Double Shear**













## Strain

- Strain is the deformation per unit length of the member.
- Strain is expressed as,

$$\varepsilon = \frac{\delta}{L}$$

Where,  $\delta$ = total deformation L= Original length

Unit of unit is m/m , mm/mm, in/in

### Normal strain









Fig. 2.4



 $\sigma = \frac{P}{A} = \text{stress}$  $\varepsilon = \frac{\delta}{L} = \text{normal strain}$ 

$$\sigma = \frac{2P}{2A} = \frac{P}{A}$$
$$\varepsilon = \frac{\delta}{L}$$

### Shear strain

Shear strain= 
$$\frac{\delta_s}{L}$$

From figure,  $\tan \gamma = \frac{\delta_s}{L}$ 



For small value of  $\gamma$ , tan  $\gamma \approx \gamma$ 

So shear strain, γ can be defined as the angular change between two perpendicular faces of a differential element.